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a b s t r a c t

Multi-label data classification has received much attention due to its wide range of application
domains. Unfortunately, a class imbalance problem often occurs in multi-label datasets, causing
challenges for classification algorithms. Oversampling is one of the most important approaches, as
it generates minority label instances to balance the class distribution. However, existing oversampling
methods ignore existing label correlations, resulting in the generation of inappropriate synthetic
minority samples and making multi-label data classification tasks harder. In this work, we propose an
oversampling method that considers label correlations and identifies two critical boundary regions for
generating synthetic minority samples. Moreover, we propose a weighting strategy to assign weights
to these instances based on their distance information. To evaluate the performance of our proposed
method, we conducted experiments on sixteen public datasets. The results show that our approach
outperforms the state-of-the-art approaches in terms of various assessment metrics, such as Macro F1
and Macro AUC. The code is available at https://github.com/IntelliDAL/Multi-label/tree/main/LCOS.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Traditional supervised learning addresses the problem where
ach object is associated with a single predefined label. However,
cross a wide range of real-world applications, e.g., biological data
nalysis, social network mining, and text categorization [1–6],
ne object may simultaneously contain multiple labels. Multi-
abel learning algorithms attempt to learn a mapping from the
eature space X ⊆ Rd to the label space Y ⊆ {0, 1}c , where
denotes the dimension of features and c denotes the number
f labels. To handle such tasks, multi-label learning has attracted
uch attention in recent years [7–11]. Class imbalance among la-
els, as one of the greatest challenges in learning from multi-label
ata, has not been fully considered by most existing multi-label
earning approaches.

In imbalanced learning, the sampling methods aim to bal-
nce the distribution between the majority and the minority
lasses [12–16]. Although it is difficult to model the actual class
istribution, it is observed that classifiers learn better from a
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balanced distribution than from an imbalanced one [17]. One
flexible and efficient solution to address the imbalance problem
is to employ sampling methods before training a multi-label
learning model [18–20]. However, the imbalance issue makes it
more complex in multi-label classification settings. Traditional
undersampling or oversampling does not easily generalize to the
multi-label domain due to the complicated imbalance between
labels. The reasons are as follows: (1) there exist multiple minor-
ity classes or multiple majority classes, which are more difficult
to tackle; (2) the labels tend to co-occur, resulting in the joint
appearance of minority and majority labels in the same instances.
How to solve the co-occurrence of multiple labels with varying
frequencies for the same training example is critical [8]. For
example, as shown in Fig. 1, multiple minority labels (multi-
minority cases) or multiple majority labels (multi-majority cases)
exist at the same time. Moreover, many inherent correlations
among the labels with different strengths occur. Both introduce
more challenges for oversampling algorithms.

In two-class classification task modeling, the relationships be-
tween classes are relatively simple. In a multi-label task, the label
relationships are definitely more complex and challenging. Al-
though existing multi-label sampling methods balance the global

imbalance of multi-label datasets, they neglect the fact that the
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Fig. 1. The concurrence among the labels in the yeast dataset, which exhibits
multi-label imbalance. Each arc represents a label, and the width of the bands
connecting arcs denotes the number of samples with a pair of labels appearing
together.

labels are correlated; especially when some minority labels are
correlated with other minority and majority labels with different
strengths, the label correlations may provide helpful extra infor-
mation. In this work, we ask the following question: are label
correlations useful for oversampling minority labels in domains
that exhibit multiple labels? Our research shows that the answer
is yes, and that the key is how to learn the label correlations and
how to leverage the label correlations to guide the oversampling
for generating exact minority label data. To this end, we propose
a label correlation guided oversampling method for multi-label
data (named LCOS), which aims to leverage label correlations to
alleviate the problems of imbalanced learning in multi-label data
and generate the appropriate synthetic minority label instances
from the perspective of label correlations. The essence of the
proposed method is three-fold: (1) learning the inherent label
correlations; (2) selecting an appropriate subset of each minority
label sample according to the learned correlation matrix; and
(3) assigning weights to the selected samples according to their
importance in the data.

The main challenge for oversampling multi-label data lies in
identifying the critical regions for generating synthetic samples
in the setting of a multi-label task, with the goal of developing
a good prediction model. In our work, label correlations are
leveraged to guide the oversampling for the multi-label data.
More specifically, we model label correlations through sequence
learning with the memory mechanism of the Recurrent Neural
Network (RNN) layer. In our study, we employ a simple RNN
(SRN) [21] to better capture the highly non-linear label corre-
lations. Each iteration in the SRN layer produces an updated
prediction considering the label correlations. We formulate label
correlation learning as a sequence prediction problem. Given the
learned correlations, the specific regions of the minority label to
be oversampled are determined. Much of the literature, such as
Borderline-SMOTE [22] and MWMOTE [23], has already shown
that boundary samples make the greatest contribution to clas-
sification performance. In our work, we define two boundaries,
outer-boundary and inter-boundary as seeds. At the same time,
in addition to the between-class imbalanced distribution, there
also exists within-class imbalance, which means that given a
pair of labels p and q, there is an imbalance between the region
where instances are associated with both labels p and q, and the
region where instances are associated with label p without label
q. To address this problem, the inner-boundary samples are also
identified as candidate seeds. From the subset of candidate seeds,
we further propose a weighing scheme for determining the final
seeds according to their importance in the data. Finally, different

numbers of instances are generated for different minority seeds

2

by interpolation. Instead of performing global oversampling such
as MLROS and MLSMOTE [24], our oversampling is a local over-
sampling method. This locality is reflected in two aspects: only
the labels satisfying our assumption are considered rather than
all the labels, and only local boundary regions are oversampled
rather than the whole region of the minority label. Comprehen-
sive experiments on sixteen benchmark datasets show that LCOS
achieves competitive performance compared to state-of-the-art
algorithms, in terms of Macro F1, Macro AUC, Hamming Loss and
Ranking Loss.

2. Related work

Recently, the imbalance problem in multi-label learning has
been widely studied due to its wide application. In this section,
we briefly review the research on multi-label learning, label
correlation modeling and multi-label sampling methods.

2.1. Multi-label learning

In multi-label learning, each instance is associated with multi-
ple class labels simultaneously [25]. Formally, let X ∈ Rd denote
the d-dimensional input space and Y = {y1, y2, . . . , yc} denote
the c predefined labels. The task of multi-label classification is to
learn a function h : X → Y from the multi-label training set
D = {(xi, Yi)|1 ⩽ i ⩽ N}. Here, xi ∈ X is a d-dimensional instance
and Yi ⊆ Y is the set of labels associated with xi. N denotes the
number of instances. For any unseen instance xj, h(·) can assign a
set of relevant labels for xj.

Most multi-label learning methods mainly exploit the correla-
tions among labels to improve the prediction performance [26].
According to the order of the label correlations, these methods
can be divided into three categories: first-order, second-order,
and high-order. Multi-Label k-Nearest Neighbor (ML KNN) [27],
Weighted MLKNN [28], Relative Discernibility Pair Matrix (RDPM)
[29] and Binary Relevance (BR) [30] are first-order methods that
completely ignore label correlations and treat each class label
independently. To solve this limitation, the pairwise correlations
between class labels are considered in several works. For exam-
ple, Calibrated Label Ranking (CLR) [31] exploits pairwise label
correlations by transforming the multi-label learning problem
into a pairwise label ranking problem. Nan et al. [32] designed
a method to exploit the local positive and negative pairwise
label correlations. Although the second-order methods are more
effective in exploiting the label correlations, the relationships of
labels are complex in real-world scenarios and high-order corre-
lations should be taken into account. The previous studies [33–
35] have revealed that the higher-order strategy has a stronger
ability for modeling the label correlations than the first-order and
second-order strategies. For example, Zhang et al. [34] developed
an approach to enrich the labeling information by transform-
ing structural information modeled by sparse reconstructions in
the feature space. Lin et al. [35] introduced a multi-label learn-
ing method based on linear regression and considered the label
correlations based on a fuzzy similarity relationship within the
label set. The high-order approach can capture more important
correlations and exploit more vital information hidden in labels.
Therefore, our work focuses on the higher-order strategy.

2.2. Exploiting label correlation

How to exploit the label correlations for improving the clas-
sification performance is important in multi-label classification.
A common approach is to calculate the co-occurrence frequency
of labels in the label space. For example, Chou et al. [36] pro-

posed to capture the relations between labels by calculating a
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o-occurrence statistical matrix. Li et al. [37] developed a multi-
abel method taking advantage of label correlations based on
he assumption that if two labels are strongly related, they have
imilar outputs. Lin et al. [38] proposed two types of mutual in-
ormation between labels to capture the label correlations under
binary distribution. However, most of these methods obtain the
econd-order label correlations by calculating the co-occurrence
requency or mutual information, failing to fully exploit the la-
el information. To better model the inherent label correlations,
ome graph-based methods are proposed to model the high-
rder label correlations. For example, Huang et al. [39] designed
n approach to model the inherent label correlations by learn-
ng an embedding matrix from a predefined label correlation
raph via graph embedding. Chen et al. [40] introduced a label-
ware graph representation learning to acquire more reliable
nd discriminative graph label representation and graph feature
epresentation. Chen et al. [41] proposed to take advantage of
raph convolutional networks to capture the high-order label cor-
elations. However, most graph-based methods have a common
imitation: the graph structure for modeling the label correlations
s predefined by simply estimating their co-occurrence patterns,
hich hinders the capability of modeling the appropriate label
orrelations. To address the above problem, we regard the high-
rder label correlation modeling as a sequence learning paradigm
ia the internal memory characteristic in simple RNN (SRN) [21].

.3. Multi-label sampling methods

Multi-label sampling approaches aim to correct skewed class
istributions by removing or adding examples, which is inde-
endent of multi-label classification algorithms [8]. Particularly,
hese studies can be further divided into two categories: under-
ampling methods and oversampling methods. Multi-label un-
ersampling methods attempt to remove instances associated
ith the majority label by random and heuristic schemes. For
xample, two popular multi-label undersampling methods, Label
owerset Random Undersampling (LPRUS) and Multi-Label Ran-
om Undersampling (MLRUS) [42], were proposed to alleviate
he imbalanced distribution. The former converts multi-label into
ulti-class classification tasks by treating each label combination

label set) as a class, then randomly removes the instances as-
ociated with the most frequent label set. By contrast, the latter
nstead considers the frequency of individual labels rather than
he whole label set. The major limitation of the random under-
ampling methods is that significant information may be lost. To
lleviate this problem, some heuristic undersampling methods
ere proposed. For example, Multi-Label Tomek Link (MLTL) [43]
as designed as a heuristic undersampling by employing Tomek
ink for data cleaning in the majority labels. MultiLabel edited
earest Neighbor (MLeNN) [44] first excludes all the samples
ith the minority labels and then removes the remaining samples
hat are significantly different from their neighbor label sets.
ontrary to the multi-label undersampling methods, multi-label
versampling methods attempt to generate instances associated
ith minority labels to balance label distribution by random
r heuristic scheme. Similar to LPRUS, Label Powerset Random
versampling (LPROS) randomly replicates instances associated
ith the least frequent labels. However, LPROS is prone to overfit-
ing since it often involves replicating minority class samples. To
olve this problem, Multilabel Synthetic Minority Over-sampling
echnique (MLSMOTE) [24] was proposed to generate new syn-
hetic instances and the associated label set from the selected
nstance and its neighbors. However, MLSMOTE is prone to pro-
uce noise since it ignores the neighbors’ distribution during
he oversampling process. To alleviate this issue, Multi-Label
ynthetic Oversampling based on Local label imbalance (ML-
OL) [45] was proposed to select instances with a large degree
3

of local imbalance for oversampling by taking into account the
local imbalance.

Our work belongs to the heuristic oversampling method. Al-
though previous works improve the multi-label imbalanced data
learning to some extent, they fail to consider the effect of label
correlations in oversampling.

3. Definition and assumption

3.1. Definition

To balance the class distribution, we need to oversample the
minority label instances. However, not all the minority label
instances contribute to the classification and therefore they are
not all required in the oversampling. Therefore, we need to se-
lect the local regions that are significant for the classification
performance, especially when the labels exhibit complicated cor-
relations. Because the instances on the boundary and the ones
nearby are more likely to be misclassified than the ones far
from the boundary, they are more important for classification.
To this end, our method focuses on oversampling the instances
from the boundaries of the minority class labels. Furthermore,
we categorize the boundaries into outer-boundary and inner-
boundary given a pair of labels yp and yq. They are defined as
follows:

Definition 1. For a pair of labels yp and yq, Rp = {(xi, Yi)|yp ∈

Yi, 1 ⩽ i ⩽ N} denotes the set of instances associated with yp
and Rpq = {(xi, Yi)|yp /∈ Yi, yq ∈ Yi, 1 ⩽ i ⩽ N} denotes the set
of instances associated with yq but not associated with yp. The
outer-boundary BO

pq of yp is the boundary between Rp and Rpq.
More specifically, for each xi ∈ Rpq, let NNO

pq(xi) denote the nearest
k neighbors of xi in Rp. Thus, BO

pq is the union of all NNO
pq(xi),

i.e., BO
pq = ∪xi∈RpqNN

O
pq(xi).

Definition 2. For a pair of labels yp and yq, Rpq = {(xi, Yi)|yp ∈

i, yq /∈ Yi, 1 ⩽ i ⩽ N} denotes the set of instances associated
ith yp but not associated with yq. Rpq = {(xi, Yi)|yp ∈ Yi, yq ∈

i, 1 ⩽ i ⩽ N} denotes the set of instances associated with both
p and yq. The inner-boundary BI

pq of yp is the boundary between
pq and Rpq. More specifically, for each xi ∈ Rpq, let NN I

pq(xi) denote
the nearest k neighbors of xi in Rpq. Thus, BI

pq is the union of all
N I

pq(xi), i.e., B
I
pq = ∪xi∈RpqNN

I
pq(xi).

Both the outer-boundary and inner-boundary are illustrated
n Fig. 2. If we only oversample the outer-boundary BO

pq, it may
lead to within-class imbalance for yp, which indicates that Rpq and
Rpq are not balanced. To avoid this, it is necessary to oversample
BI
pq. A minority label instance is identified as an instance of BO

pq
f it is located in Rp and is one of the k-nearest neighbors of an
nstance in Rpq. Similarly, a minority label instance is identified as
an instance of BI

pq if it is located in Rpq and is one of the k-nearest
eighbors of an instance in Rpq.

.2. Assumption

It is well-known that label correlations are significant for
ulti-label learning. Many current multi-label learning
pproaches attempt to incorporate label correlations to improve
erformance. Label correlations can provide useful additional in-
ormation, especially when there are insufficient training samples
or some labels. In this work, we assume that the stronger corre-
ation between a pair of labels, the more instances exist with label
o-occurrence in their outer-boundary, and vice versa. To verify
ur hypotheses, we carried out a pilot study to investigate the
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Fig. 2. The set of labels for this multi-label dataset is {yp, yq}. BO
pq is the boundary

between Rp and R pq . BI
pq is the boundary between Rp q and Rpq . The size of the

hape represents the selection weight.

Fig. 3. The number of instances with co-occurrence labels on the outer-
boundary under different levels of label correlations. The x-axis represents the
label correlation strength. The y-axis represents the number of label pairs on
the outer-boundary for each label correlation strength.

Fig. 4. A multi-label dataset with five labels. BO
pqj denotes the outer-boundary

between label yp and its related label yqj .

relationship between the number of instances with co-occurrence
labels and the degrees of correlation strength. From Fig. 3, it
can be observed that the stronger correlation between a pair of
labels, the more instances with co-occurrence labels exist in their
outer-boundary. The label correlation matrix V is obtained by the
sequence learning described in Section 4.1 and V (p, q) represents
the label correlation between labels yp and yq. If V (p, q) is greater
han a correlation threshold τ , it indicates that yp has a strong
orrelation with yq, otherwise, they are weakly correlated. Then,
abel correlations can guide us to choose the outer-boundary of
ach minority for oversampling. For a minority label, we divide
ts outer-boundary into four types of regions occupied by the
inority and its related labels. Fig. 4 depicts the outer-boundary

or four different cases of label y . As shown in Fig. 4, y is a
p p

4

Fig. 5. The architecture of our method.

minority label and is correlated with the other four labels. Thus,
the following conditions exist:

• Condition 1: yq1 is a related minority class and V (p, q1) ≤ τ .
Both yp and yq1 are minority labels and relatively balanced.
Therefore, the outer-boundary of BO

pq1 does not need to be
oversampled.

• Condition 2: yq2 is a related minority class and V (p, q2) > τ .
In BO

pq2 , there are many instances associated with both yp
and yq2 due to their strong correlation. From the view of
Label Powerset [46], the combination label of yp and yq2 is
a meaningful label, thus BO

pq2 is desirable to be enhanced by
oversampling.

• Condition 3: yq3 is a related majority class and V (p, q3) ≤ τ .
In BO

pq3 , there are fewer instances associated with both yp
and yq2 due to their weak correlation. Oversampling in BO

pq2
can effectively increase minority label instances to alleviate
the class imbalance.

• Condition 4: yq4 is a related majority class and V (p, q4) > τ .
In BO

pq4 , these instances are associated with yp and yq4 simul-
taneously. Oversampling yp in BO

pq4 could inevitably increase
the number of co-occurrences of labels yp and yq4 , failing to
alleviate the class imbalanced distribution.

In summary, only Condition 2 and Condition 3 necessitate
versampling.

. Label correlation guided borderline oversampling

The structure of our proposed method LCOS is shown in Fig. 5.
s mentioned before, it consists of four components: (i) Label
orrelation learning for capturing the label correlation. (ii) Can-
idate seed identification for determining the instances that are
ocated on the outer-boundary and inner-boundary. (iii) Seed
eighting for assigning the proper weight to the candidate seeds
nd then selecting the final seeds based on their weights. (iv)
nstance generation for generating new instances from the final
eed instances.

.1. Label correlation learning

Recurrent Neural Network (RNN) is a class of neural network
odels commonly used to solve sequence prediction problems.
o capture the correlations among labels, we use the simple
NN (SRN) model [21], which is a basic variation of RNN. It
an iteratively learn the label correlations through its memory
tructure. Formally, label correlation learning is formulated as a
equence prediction problem as follows:

ˆ
(1)

= σ UX , (1)
( )
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ˆ
(t)

= σ
(
UX + V ŷ(t−1)) , (2)

where ŷ(t) denotes the output vector, U ∈ Rc×d is used to trans-
form the feature vector into the output space, d is the dimension
of data, c is the number of labels and V ∈ Rc×c is used to
transform the output of the previous iteration into the same
output space as the output of U .

We set the number of iterations of the SRN layer to be T . In the
first iteration, the sequence learning produces a prediction based
on Eq. (1) without considering other labels. From the second
iteration, the sequence learning begins to exploit the output of
the previous iteration to make better predictions, with the last
predicted ŷ(T ) as the final result. Particularly, the memory term
V ŷ(t−1) in Eq. (2) serves as label correlation by taking in the
previous output and transforming it to the same output space as
the output of U . Therefore, the final prediction ŷ(t) is obtained
through T iterations, while the label correlation V is also learned.

4.2. Candidate seed identification

The criterion for considering a label yp to be a minority class
label when IRLblp > MeanIR, where IRLblp = Nmax/Np is a
measure to assess the imbalance ratio of the pth label, MeanIR =
1
c

∑c
p=1 IRLblp is obtained by averaging the IRLbl for all labels,

Np is the number of instances belonging to yp and Nmax =

ax(N1,N2, . . . ,Nc) is the maximum number of instances con-
tained in the label set. Let Ymin and Ymaj denote the set of minority
labels and the set of majority labels, respectively. For each yp ∈

Ymin, it is noted that Rp = Rpq1 ∪ Rpq2 ∪ ...Rpqm ∪ Rs
p, where m

denotes the number of associated labels with yp and Rs
p denotes

he set of instances that are only associated with yp. Therefore,
BO
p = BO

p ∪ BO
pq(1 ⩽ q ⩽ c, q ̸= p, (yq ∈ Ymin, V (p, q) > τ ) or

yq ∈ Ymaj, V (p, q) ≤ τ )). We define Lp as the set of labels that
are correlated with the minority label yp. BI

p = ∪yq∈LpB
I
pq repre-

sents the inner-boundaries of yp with other co-occurring labels.
Therefore, the candidate seeds consist of the outer-boundaries
BO

= ∪yp∈YminBO
p and the inner-boundaries BI

= ∪yp∈YminBI
p.

4.3. Seed weighting

Although the instances on the boundary are more important,
the information provided by these instances is still different.
Therefore, we propose a weighting scheme to assign different
weights for each instance according to a distance factor.

Step 1 Outer-boundary Instances Weighting For each xi ∈ BO
p ,

he farther distance from the same label instances or the closer
istance from other label instances, the more important xi is. Let
p
i be the set of k-nearest neighbors of xi in Rp and Spi be the set
f k-nearest neighbors of xi in Rp. Therefore, the distance factor,

denoted by wO
p (xi), is defined as

wO
p (xi) = dist2(xi,S

p
i )/dist2(xi,S

p
i ), (3)

where

dist2(xi, S
p
i ) =

∑
xj∈S

p
i
dist1(xi,xj)/

⏐⏐⏐Spi ⏐⏐⏐. (4)

The function dist2(x, S) is the distance from a point x to a sample
subset S, and the function dist1(xi, xj) is the Euclidean distance
between two points xi and xj. dist2(xi, S

p
i ) is calculated in Eq. (4).

t represents the distance from xi to Spi . Because an instance may
e associated with multiple minority labels, let Ymin

i = Yi ∩ Ymin

e the set of minority labels associated with x . Ymin is the set of
i

5

minority labels. Thus, wO(xi) = max({wO
p (xi)|yp ∈ Ymin

i }). Then, it

is normalized as ŵO(xi) =
wO(xi)∑|BO|

i=1 wO(xi)
.

Step 2 Inner-boundary Instances Weighting For xi ∈ BI
p, let

xoi be the opposite of xi, which is the nearest neighbor of xi in
the instances of labels correlated with yp. Let S

Lp
i be the set of k-

nearest neighbors of xoi in RLp , where RLp = ∪g∈LpRg . The farther
he distance of xi from its same label instances or the closer the
istance of xoi from its same label instances, the more important

xi is. The weighting strategy is similar to outer-boundary instance
weighting. Therefore, wI

p(xi) is defined as:

wI
p(xi) = dist2(xi,S

p
i )/dist2(xoi,S

Lp
i ). (5)

It is calculated in the same way as Eqs. (3) and (4). Lp represents
the set of labels correlated with yp. To avoid excessive oversam-
pling on the inner-boundary, wI (xi) = min({wI

p(xi)|yp ∈ Ymin
i }).

Then, it is normalized as ŵI (xi) =
wI (xi)∑|BI |

i=1 wI (xi)
. We further set a

threshold β for ŵI (xi). If ŵI (xi) is less than β , it is set to 0.

Step 3 Seed Instance Selection ŵO and ŵI represent the weights
of the instances on the outer-boundaries and the inner-
boundaries, respectively. The number of synthetic instances for
BO and BI are defined as GO

=
⏐⏐BO

⏐⏐ × p and GI
=

⏐⏐ŵI > 0
⏐⏐,

espectively.
⏐⏐ŵI > 0

⏐⏐ is the number of instances whose weight
s greater than 0 and p is the sampling ratio of BO. A candidate
eed instance is selected using the roulette algorithm [47] based
n its weight. A candidate seed instance is selected according
o the weights of the instances. Candidate instances that carry
ore information will be oversampled more times than those
ontaining less information, thereby improving the quality of the
ewly generated minority instances.

.4. Instance generation

The next issue after selecting seed instances is how to generate
ew instances according to the selected seed instances. Given
seed instance, a new instance is generated based on the seed

nstance and the reference instance through linear interpolation.
ote that the selected reference instance needs to have the same
et of labels as the selected seed instance. Since that region is
arefully determined, the labels can be safely assigned to be the
ame as the seed labels.

.5. LCOS pseudo-code

Algorithm 1 illustrates the pseudocode of the proposed LCOS,
n which the training set D is the input data and the output data is
he resampled data D′ including the synthetic instances generated
y LCOS. Line 3 of Algorithm 1 returns the minority labels that
eed to be oversampled. Line 4 is used to obtain the learned
abel correlations. Lines 5–21 depict the process of candidate
eed identification. Candidate seeds consist of the outer-boundary
nd inner-boundary of minority labels. Line 9 is to obtain the
nner-boundary of yp. According to the learned label correlations,
he outer-boundary of a minority label is the outer-boundary
ormed by it and strongly correlated minority labels (Lines 10–12)
r weakly correlated majority labels (Lines 14–16). Lines 20–21
re the outer-boundaries and inner-boundaries, which constitute
he candidate seeds. Line 23 calculates the weight of candidate
eeds and the number of newly generated samples according to
qs. (3)–(5) in Section 4.3 Seeds Weighting. Then, we select the
eeds to generate the synthetic instances based on the selective
eight of seeds and the number of newly generated samples (Line
4).
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Algorithm 1: LCOS
Input: Training set D (X, Y), Outer-boundary sampling

ratio p, Inner-boundary sampling threshold β ,
Number of nearest neighbors k, Correlation
threshold τ

Output: Oversampled dataset D′

1 Initialize Ymin
= ∅;

2 Initialize BO = BI = ∅;
3 Obtain Ymin based on Y ;
4 V = LabelCor(X, Y ); ▷ obtain label correlation matrix
5 for yp in Ymin do
6 for yq in Y do
7 Obtain BO

pq and BI
pq according to Definition 1 and

Definition 2;
8 if yp ̸= yq then
9 BI

p = BI
p ∪ BI

pq; ▷ inner-boundary of yp
10 if V (p, q) > τ and yq ∈ Ymin then
11 ▷ strongly correlated with minority labels
12 BO

p = BO
p ∪ BO

pq;
13 end
14 if V (p, q) ≤ τ and yq /∈ Ymin then
15 ▷ weakly correlated with majority labels
16 BO

p = BO
p ∪ BO

pq;
17 end
18 end
19 end
20 BO

= BO
∪ BO

p ;
21 BI

= BI
∪ BI

p;
22 end
23 Calculate ŵO, ŵI , GO, GI according to Eqs. (3)–(5);
24 Generate new instances D′ based on ŵO, ŵI , GO, GI ;
25 D′

= D′
∪ D;

26 return D′;

4.6. Complexity analysis

In our proposed LCOS algorithm, the time complexity is mainly
omposed of four components: (1) The complexity of learning the
abel correlations is O(Tc2), where T is the number of iterations
nd c is the number of labels. In our work, we set T to 100. (2) The
omplexity of searching kNN is O(nd), where d is the dimension
f data. Therefore, the complexity of candidate seed identification
s O(n′nd), where n is the number of all samples and n′ is the
umber of all minority class samples. (3) The complexity of the
eed weighting is O(nSnd), where nS is the number of candidate
eeds. (4) The complexity of instance generation is O(nG(c + d)),
here nG is the number of synthetic instances. In summary, the
omplexity of the LCOS algorithm is O(Tc2 +n′nd+nSnd+nG(c+

)). The complexity of the state-of-the-art oversampling method,
LSOL [45], is O(n2d + n2k + nkc + nG(c + d)). The most time-
onsuming steps for LCOS and MLSOL are O(n′nd) and O(n2d),
espectively. Because n′ < n, our LCOS is less time-consuming
han MLSOL.

. Experiment

In this section, we verify the performance of the proposed
COS by evaluating it on real datasets and comparing it with other
tate-of-the-art multi-label oversampling algorithms. Firstly,
ection 5.1 presents the experimental setup including datasets,
valuation metrics, classification algorithms, etc. Then, the ex-

erimental results are reported in Section 5.2. The influence

6

f the parameters of our algorithm is extensively investigated
n Section 5.3. The effectiveness of learned label correlations is
erified in Section 5.4. We conduct an ablation study in Sec-
ion 5.5. The influences of imbalance level and label number are
iscussed in Section 5.6. Finally, the effectiveness of exploiting
abel correlations is examined in Section 5.7.

.1. Experimental setup

.1.1. Datasets
To thoroughly verify the effectiveness of the proposed algo-

ithm, sixteen multi-label datasets from different domains are
mployed in experiments. These datasets are commonly used
n multi-label classification tasks and the detailed properties of
he datasets are presented in Table 1. We can observe variations
n the imbalance levels in the data sets, which are meant to
epresent the average imbalance rate for different levels.

To maintain uniformity, we preprocess the datasets as sug-
ested by [10,48]. We remove labels with fewer than 20 in-
tances. We also reduce the feature sets for large datasets namely
orel5k, bibtex, rcv1subset1, rcv1subset2, yahoo-Arts, yahoo-
ducation. We use a simple feature selection method to retain
nly the top 1% of the features sorted by the number of non-zero
alues, similar to [45].

.1.2. Evaluation metrics
Under class-imbalanced scenarios, F1 and Area Under the ROC

urve (AUC) are the most commonly used evaluation metrics [10].
1 combines the metrics of precision and recall, and AUC consists
f the metrics of sensitivity and specificity [49]. Both of them are
omprehensive evaluation metrics that provide great insights into
lassification performance. We compute the metric average over
ll labels called macro-averaging, which is a way of aggregating
inary metrics in multi-class and multi-label tasks. Macro aver-
ging is more suitable for imbalanced learning because it treats
ll labels equally [50]. Additionally, Hamming Loss and Ranking
oss can evaluate the percentage of misclassified labels and the
verage fraction of reversely ordered pairs, respectively. There-
ore, we employ Macro-averaged F1 (Macro F1), Macro-averaged
UC (Macro AUC), Hamming Loss and Ranking Loss to measure
he performance of methods. They are described as follows.

• Macro F 1: It is calculated from the average of F1 values
across all labels.

Macro F1 =
1
c

c∑
j=1

F1j (6)

F1j =
2 × TPj

2 × TPj + FPj + FNj
(7)

c indicates the total number of labels. TPj, TNj, FPj and FNj
represent the number of true positive, true negative, false-
positive and false-negative test examples with respect to
label yj, respectively.

• Macro AUC: It is calculated from the average AUC of all
labels. Let AUCj denote the AUC score for yj.

Macro AUC =
1
c

c∑
j=1

AUCj (8)

• Hamming Loss: It calculates the fraction of misclassified
labels, i.e., the instance associated with a wrong label or a
label assigned to the instance which is not predicted.

Hamming Loss =
1
N

N∑
i=1

|Ŷi ⊕ Yi|

c
, (9)

where ⊕ represents the XOR operation.
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Table 1
The multi-label datasets used in the experiments.
Dataset Samples Features Labels Cardinality Density MeanIR MaxIR Domain

enrona 1702 1001 35 3.273 0.094 19.128 52.286 Text
medicala 978 1449 14 1.191 0.085 5.968 12.765 Text
yeasta 2417 103 14 4.246 0.303 7.281 54.185 Biology
scenea 2407 294 6 1.067 0.178 1.232 1.404 Image
birdsa 645 260 12 1.778 0.148 2.716 4.778 Audio
flagsa 194 19 7 3.329 0.476 2.297 5.591 Image
Corel5ka 5000 499 50 2.341 0.047 7.459 13.191 Image
bibtexa 7395 183 50 1.350 0.027 6.131 9.372 Text
rcv1subset1a 6000 472 50 2.594 0.052 7.042 14.520 Text
rcv1subset2a 6000 472 50 2.354 0.047 8.388 18.435 Text
yahoo-Artsa 7484 231 24 1.655 0.069 13.686 78.211 Text
yahoo-Educationa 12030 275 27 1.460 0.054 53.751 188.689 Text
chemistryb 6856 540 50 1.639 0.033 9.82 19.821 Text
chessb 1538 585 46 1.861 0.04 12.048 24.857 Text
cookingb 10157 578 50 1.161 0.023 5.055 8.674 Text
philosophyb 3814 842 50 1.702 0.034 12.197 29.682 Text

(‘‘Samples’’ is the number of samples, ‘‘Features’’ is the dimensionality of features, ‘‘Labels’’ is the total number of labels, ‘‘Cardinality’’
is the average number of labels per sample, ‘‘Density’’ is equal to cardinality divided by labels, ‘‘MeanIR’’ and ‘‘MaxIR’’ individually
denote the average and maximum imbalance ratio of a data set, and ‘‘Domain’’ is the domain of the datasets.)
a https://mulan.sourceforge.net/datasets.html.
b https://www.uco.es/kdis/mllresources/.
T

Table 2
Parameters of sampling methods.
Sampling methods Parameters of methods

MLROS P = 0.5
MLRUS P = 0.1
MLSMOTE k = 5
MLSOL P = 0.3, k = 5
LCOS p = 5, k = 5, τ = 0.6, β = 0.2

• Ranking Loss: It calculates the fraction of reversely ordered
label pairs, i.e., an irrelevant label is ranked higher than a
relevant label.

Ranking Loss =
1
N

N∑
i=1

1

|Yi ∥ Yi|
|{(y′, y′′)|f (xi, y′) ⩽

f (xi, y′′), (y′, y′′) ∈ Yi × Yi}|,

(10)

where Yi represents the complementary set of Yi. For Macro
F1 and Macro AUC, larger values indicate better perfor-
mance, while for Hamming Loss and Ranking Loss, smaller
values indicate better performance.

5.1.3. Classification algorithms
To evaluate the performance of the proposed algorithm, we

ompare it with the following multi-label sampling algorithms.

• MLROS, MLRUS [42]: MLROS is a multi-label oversampling
method that randomly clones samples associated with mi-
nority label sets, and MLRUS is a multi-label undersampling
algorithm that randomly deletes samples of majority label
sets.

• MLSMOTE [24]: It generates synthetic instances associated
with minority labels and takes advantage of label infor-
mation in the neighborhood to label the new synthetic
instance.

• MLTL [43]: It considers the intrinsic characteristics of multi-
label classification problems and proposes a multi-label
imbalanceness measure to search for samples from the
majority labels. Then, the majority label instance with a
large difference in the label set of its neighbors is removed
with Tomek Link.

• MLSOL [45]: It focuses on the local distribution of labels
to deal with the class imbalance problem in multi-label
7

data. Then, it employs the local label distribution to calcu-
late the selection weight vector of the seed instance and
generates more diverse and well-labeled synthetic instances
considering all informative labels.

To comprehensively compare our method with the state-of-
the-art sampling methods, we used six different multi-label clas-
sification algorithms: BR [30], CC [33], MLKNN [27], CLR [31],
HOMER [51] and ECC [33]. For the problem transformation al-
gorithms, the well-known SVM algorithm is used as the base
learner due to its popularity in classification studies. The imple-
mentation of these algorithms is provided by MULAN open source
library [52] based on the Weka platform.

All experiments are conducted through 2 × 5-fold cross-
validation and the average results are reported. To investigate
the statistical significance of the differences among the compared
algorithms, the Wilcoxon signed rank test at the 0.05 signifi-
cance level is employed [53]. Parameter settings of the sampling
methods are shown in Table 2. To make fair comparisons, the
ranges of the hyperparameters to be tuned for the sampling
methods are consistent. In MLSMOTE, MOSOL and LCOS, the
number of nearest neighbors k is selected from {3, 4, 5, 6, 7}.
he sampling ratio P is selected from {0.1, 0.3, 0.5, 0.7, 0.9}

for MLRUS, MLROS and MLSOL. For LCOS, the outer-boundary
sampling ratio p, the inner-boundary sampling threshold β and
the label correlation threshold τ are selected from {3, 4, 5, 6, 7},
{0.1, 0.2, 0.3, 0.4, 0.5} and {0.5, 0.6, 0.7, 0.8, 0.9}, respectively.
Parameter selection is conducted for each data partition using a
2 × 5-fold cross-validation on the training data.

5.2. Experimental results

We conduct experiments based on sixteen public datasets in
terms of Macro F1, Macro AUC, Hamming Loss and Ranking Loss.
Figs. 6–7 present the results of the compared sampling methods
using six base learners in terms of Macro F1 and Macro AUC. Over-
all, our proposed LCOS method outperforms the state-of-the-art
methods on most datasets. Especially on some specific datasets
(medical, yeast, scene, birds, Corel5k, bibtex, yahoo-Arts, chem-
istry, chess, cooking and philosophy), LCOS consistently performs
better than the other compared methods. To make it clearer,
Table 3 shows the average rank of each method as well as its sig-
nificant wins/losses compared to other methods in terms of four
evaluation metrics on six base multi-label classification methods.

https://mulan.sourceforge.net/datasets.html
https://www.uco.es/kdis/mllresources/
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Fig. 6. The performance of the multi-label sampling methods in terms of Macro F1 across six different classification methods.
he proposed LCOS method clearly achieves the top average
ank on all metrics and has the most significant wins without
uffering any significant loss. It can be observed that LCOS and
LSOL outperform MLSMOTE. This result reflects that selecting
ore informative seeds is more effective than directly using all
inority seeds for oversampling. We can also observe that MLROS
erforms worse than the other oversampling methods and ML-
US is inferior to MLTL, which implies that heuristic sampling is
ore effective than random sampling. An interesting observation

s that MLTL and MLRUS even perform worse than the original
atasets. The main reason is that they removed some crucial in-
tances, resulting in the loss of vital information. Although MLSOL
lso considers local imbalance, it ignores the inherent correlations
mong labels, resulting in limited performance improvement.
Additionally, regarding the overall performance of the base

earner, MLKNN has the best performance, achieving an aver-
ge Macro F1/Macro AUC of 27.6% and 74.7%. Because MLKNN
s a neighborhood-based base learner, the proposed LCOS also
epends on local imbalance. Moreover, the synthetic instance is
enerated by the seed instance and its neighbors. However, the
ne with the largest performance improvement attracts more
ttention. From the perspective of performance improvement,
lthough the performance of each classifier has been improved to
8

some extent after oversampling, the performance of CC has im-
proved the most. When CC is used as the base classifier, our LCOS
improves the Macro F1 and Macro AUC by up to 10%, and 1.7%,
respectively. The main reason is that CC also considers the high-
order correlations among labels, which are more effective than
first-order and second-order multi-label classification methods,
e.g. BR and CLR. We also compare LCOS with MLROS and MOSOL
under the condition that the amount of oversampling is equal.
As shown in Table 4, the results indicate that LCOS performs
better than the two comparable methods in terms of Macro F1 and
Macro AUC, demonstrating the advantage of exploiting the label
correlations for guiding the oversampling. Overall, LCOS achieves
a new state-of-the-art on all sixteen datasets against the existing
cutting-edge methods.

5.3. Influence of parameters

To explore the influence of parameters p (outer-boundary
sampling ratio), β (inner-boundary threshold), τ (correlation
threshold), and k (number of nearest neighbors), we employ
different settings for each parameter and provide the results in
Fig. 8. The outer-boundary sampling ratio p is used to determine
the amount of outer-boundary oversampling. From Fig. 8(a), it can
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Fig. 7. The performance of the multi-label sampling methods in terms of Macro AUC across six different classification methods.
e seen that the average rank first decreases and then increases
ith increasing p. This suggests that an appropriate sampling
atio is important for the oversampling method. We can see
hat when p = 5, our method achieves the best performance.
The correlation threshold τ is used as a threshold to remove
he weaker strength of the relationship between labels. From
ig. 8(b), with the increase in τ , the variation in rank is different
or each dataset. This is because the label correlation of distinct
atasets is quite different. If τ is too small or too large, most labels

are considered strongly correlated or weakly correlated, resulting
in less oversampling on the outer-boundaries constituted by the
majority labels or the minority labels according to Condition 4
or Condition 1 in our assumption. The inner-boundary threshold
β is used to control the sampling of the inner-boundary. With
increasing β , the number of oversampling on the inner-boundary
decreases. From Fig. 8(c), it can be observed that the rank of most
datasets has a similar trend as in Fig. 8(a). This demonstrates
that too much oversampling on the inner-boundary may cause
an additional within-class problem, while too little oversampling
does not introduce sufficient information. From Fig. 8(d), it can
be observed that the performance of most datasets first increases
and then decreases with increasing k. This is because when k
is small, it is susceptible to noisy neighbors. When k is large,
9

it will inaccurately determine seed samples, which negatively
influences the following sampling procedure. We observe that
k = 5 achieves the best performance.

5.4. Effectiveness of learned label correlation

To verify the superiority of our learned label correlation, we
compare the performance of our method under label correlations
obtained in three different ways: (1) LCOS-ST, which calculates
the label co-occurrences to obtain label correlations; (2) LCOS-MI,
which uses mutual information [54] to calculate label corre-
lations; (3) LCOS-CL, which employs the SRN model to learn
the high-order label correlations. Among them, LCOS-CL is our
proposed approach. LCOS-ST and LCOS-MI belong to the method
based on low-order label correlations, which only captures the
pairwise relationships between labels.

In Table 5, we show the results of LCOS-ST, LCOS-MI and
LCOS-CL on Yeast, Enron and Bibtex datasets. From Table 5, it
can be observed that LCOS-MI performs better than LCOS-ST.
This shows that the label correlations calculated based on mutual
information are more effective than the ones based on label co-
occurrence. In addition, it can be observed that LCOS-CL outper-
forms both LCOS-ST and LCOS-MI on the three datasets in terms
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Table 3
Average rank of the compared sampling methods using six base learners in terms of four evaluation metrics. The (n1/n2) represents the correction based on the
Wilcoxon signed rank test at the 5% level. The corresponding method is significantly better than the n1 methods and worse than the n2 methods. The best method
is highlighted in bold (Lower is better).
Metric Base Original MLROS MLRUS MLSMOTE MLTL MLSOL LCOS

Macro F1

BR 4.94(0/3) 3.75(2/1) 6.56(0/4) 3.19(2/0) 5.94(0/3) 2.00(3/0) 1.38(4/0)
CC 5.19(0/3) 4.00(1/1) 6.56(0/4) 3.13(2/0) 5.75(0/2) 2.00(3/0) 1.31(4/0)
MLKNN 5.31(0/3) 4.63(1/2) 6.19(0/4) 2.56(3/0) 5.69(0/2) 1.94(3/0) 1.69(4/0)
CLR 5.06(0/3) 3.69(2/1) 6.56(0/4) 3.19(2/0) 6.06(0/3) 1.94(3/0) 1.38(4/0)
HOMER 5.06(1/3) 3.31(2/1) 6.31(0/4) 3.81(2/0) 6.38(0/4) 2.31(3/0) 1.75(4/0)
ECC 4.81(1/2) 3.88(1/1) 6.38(0/4) 3.19(2/0) 6.31(0/4) 2.13(3/0) 1.31(4/0)
Avg(Total) 5.06(2/17) 3.88(9/7) 6.43(0/24) 3.01(13/0) 6.02(0/18) 2.05(18/0) 1.47(24/0)

Macro AUC

BR 4.88(0/3) 3.94(2/1) 6.56(0/4) 3.06(2/0) 5.94(0/3) 2.00(3/0) 1.31(4/0)
CC 5.13(0/3) 4.00(1/2) 6.50(0/4) 3.00(3/0) 5.69(0/2) 2.13(3/0) 1.25(4/0)
MLKNN 3.06(1/0) 3.56(0/0) 5.06(0/1) 2.00(1/0) 5.44(0/1) 4.31(0/0) 4.38(0/0)
CLR 3.88(1/2) 2.75(3/0) 6.00(0/4) 2.81(3/0) 6.25(0/4) 3.00(3/0) 3.31(1/0)
HOMER 5.00(1/2) 3.25(1/1) 6.31(0/4) 2.88(2/1) 6.44(0/4) 2.63(4/1) 1.44(5/0)
ECC 5.06(0/3) 3.69(2/1) 6.38(0/4) 3.44(2/1) 5.81(0/3) 2.00(4/0) 1.44(4/0)
Avg(Total) 4.50(3/13) 3.53(9/5) 6.14(0/21) 2.86(13/2) 5.93(0/17) 2.68(17/1) 2.19(18/0)

Hamming loss

BR 4.33(0/2) 3.67(2/1) 5.22(0/4) 3.33(2/0) 5.44(0/4) 2.22(3/0) 1.44(4/0)
CC 4.11(0/2) 3.89(1/1) 5.22(0/3) 2.89(2/0) 5.33(0/4) 2.22(3/0) 2.00(4/0)
MLKNN 5.67(0/3) 2.44(3/0) 5.78(0/4) 3.44(1/0) 4.00(0/1) 3.11(1/0) 2.78(2/0)
CLR 3.89(2/2) 3.78(2/1) 5.22(0/4) 2.78(2/0) 5.78(0/4) 2.22(3/0) 1.89(4/0)
HOMER 4.44(0/1) 3.00(1/0) 5.44(0/3) 2.67(2/0) 4.89(0/2) 5.00(0/2) 2.11(3/0)
ECC 4.11(0/3) 3.56(1/1) 6.33(0/4) 2.44(3/0) 4.56(0/3) 2.67(3/0) 2.00(4/0)
Avg(Total) 4.43(2/13) 3.39(10/4) 5.54(0/22) 2.93(12/0) 5.00(0/18) 2.91(13/2) 2.04(21/0)

Ranking Loss

BR 4.13(0/1) 4.75(0/2) 5.63(0/3) 3.63(2/0) 5.75(0/3) 2.38(3/0) 1.63(4/0)
CC 4.25(0/2) 4.75(0/2) 5.63(0/3) 3.88(2/0) 5.63(0/3) 2.38(4/0) 1.50(4/0)
MLKNN 5.38(0/2) 5.50(0/4) 3.00(2/0) 4.13(0/1) 3.88(1/0) 2.88(3/0) 3.13(1/0)
CLR 3.88(1/0) 2.5(3/0) 6.25(0/4) 2.88(2/0) 5.00(0/3) 4.38(1/1) 2.88(2/0)
HOMER 4.50(0/2) 3.63(2/1) 5.50(0/3) 2.75(3/0) 5.38(0/3) 4.25(0/0) 1.75(4/0)
ECC 4.75(0/2) 4.63(0/2) 5.75(0/3) 3.25(2/0) 5.50(0/3) 2.38(4/0) 1.75(4/0)
Avg(Total) 4.48(1/9) 4.29(5/11) 5.29(2/16) 3.42(11/1) 5.19(1/15) 3.10(15/1) 2.11(19/0)
Fig. 8. Results of LCOS with various parameter settings on birds, medical, scene and yeast datasets in terms of average rank on Macro F1 and Macro AUC with six
ase learners.
10
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Table 4
Average rank of MacroF1 and Macro AUC for MLROS, MOSOL, and LCOS on six-
teen datasets with six base learners under the setting of the equal oversampling
amount (lower is better).
Metric Base MLROS MLSOL LCOS

Macro F1

BR 2.88 1.69 1.44
CC 2.94 1.69 1.38
MLKNN 2.69 1.75 1.56
CLR 2.88 1.69 1.44
HOMER 2.31 2.00 1.69
ECC 2.81 1.63 1.56
Avg 2.75 1.74 1.51

Macro AUC

BR 2.75 1.81 1.44
CC 2.88 1.81 1.31
MLKNN 1.88 2.25 1.88
CLR 2.06 2.19 1.75
HOMER 2.19 2.13 1.69
ECC 2.88 1.75 1.38
Avg 2.44 1.99 1.57

Table 5
Results of LCOS with different label correlations using MLKNN on Yeast, Enron
and Bibtex datasets.
Metrics Methods Yeast Enron Bibtex

MacroF1
LCOS-ST 0.4023 0.1233 0.1454
LCOS-MI 0.4103 0.1243 0.1452
LCOS-CL 0.4268 0.1385 0.1641

Macro AUC
LCOS-ST 0.6474 0.6102 0.6422
LCOS-MI 0.6618 0.6122 0.6577
LCOS-CL 0.6722 0.6270 0.6612

Hamming loss
LCOS-ST 0.2347 0.0829 0.0299
LCOS-MI 0.2318 0.0818 0.0283
LCOS-CL 0.2262 0.0814 0.0272

Ranking loss
LCOS-ST 0.2093 0.1415 0.1948
LCOS-MI 0.2027 0.1409 0.1762
LCOS-CL 0.1950 0.1373 0.1747

of all evaluation metrics. This demonstrates that our learned high-
order label correlations are superior to the low-order ones, which
can fully mine the label information and provide more useful
information.

5.5. Ablation study

To validate the effect of label correlations, the identification
nd oversampling of outer-boundary and inner-boundary, we
onsider three model variants of (1) LCOS-LC, which oversam-
les on all the outer-boundary and the inner-boundary without
onsidering label correlations; (2) LCOS-O, which only oversam-
les on the inner-boundary; (3) LCOS-I, which only oversamples
n the outer-boundary under the guidance of the learned label
orrelations.
In Table 6, we show the average rank of Macro F1 and Macro

UC on six base learners and sixteen datasets. It can be ob-
erved that LCOS performs better than all variants, regardless of
acro F1 and Macro AUC. This demonstrates that the proposed
ethod integrates these components in a principled manner to
xploit the strengths of each part. Additionally, LCOS-LC is in-
erior to LCOS indicating that label correlations can effectively
uide oversampling. LCOS-O without oversampling the outer-
oundary performs worse than LCOS-I without oversampling the
nner-boundary, which suggests that the outer-boundary is more
ssential than the inner-boundary.

.6. Influences of imbalance level and label number

To investigate the influence of different imbalance levels, we
ompare the performance of our method on different datasets
11
Table 6
Average rank of the MacroF1 and Macro AUC metrics for LCOS-LC, LCOS-I, LCOS-O
and LCOS with six base learners and sixteen datasets (Lower is better).
Metric LCOS-LC LCOS-I LCOS-O LCOS

Macro F1 1.78 2.68 3.88 1.66
Macro AUC 1.94 2.85 3.29 1.86

Fig. 9. Results of LCOS with various imbalance levels and label numbers. The
solid circle represents the improvement for each dataset. The hollow circle
represents the average of improvements across all datasets with the same scope
of imbalance ratio.

with varying imbalance ratio levels in terms of MeanIR. We divide
the MeanIR into seven intervals: [0, 3), [3, 6), [6, 9), [9, 12), [12,
15), [15, 30) and [30, 60). We evaluate the average improvements
by our LCOS compared with the traditional classification method
without any oversampling for each imbalance ratio level. As
shown in Fig. 9(a), it can be observed that performance improve-
ment increases gradually at first, then begins to decrease, and
finally tends to be stable with increasing MeanIR. This demon-
strates that the LCOS algorithm can realize obvious improvements
for multiple datasets. Nevertheless, a large imbalanced class dis-
tribution will inevitably affect label correlation learning, resulting
in limited performance improvement.

In addition, we use the same comparison strategy to investi-
gate the influence of the different label numbers. We divide the
label number into five intervals: [0, 10), [10, 20), [20, 30), [30, 40)
and [40, 50]. As shown in Fig. 9(b), it can be observed that the
improvement in performance increases at first, then decreases
to some extent, and increases again as the number of labels
increases. The reason for the decreased improvement is that there
are some datasets with larger MeanIR resulting in introducing
noisy synthetic samples, e.g., the meanIR of yahoo-Education is
53.8. The improvement of our LCOS is still greater than 20%
compared with the one without any oversampling. When the
number of labels increases, our method can better exploit la-
bel correlations to guide oversampling, facilitating oversampling
quality and classification.
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Table 7
Average rank of Macro F1 and Macro AUC for different ways to exploit label
correlations on six base learners on sixteen datasets (Lower is better). ‘‘Learning’’
and ‘‘Statistics’’ indicate the learned label correlations and the statistical label
correlations, respectively.
Correlation Macro F1 Macro AUC

Estimation manner Guidance manner

Minority Majority

Statistics

Weak Weak 4.98 4.93
Weak Strong 5.58 5.28
Strong Strong 6.45 5.81
Strong Weak 3.13 3.63

Learning

Weak Weak 3.62 3.75
Weak Strong 4.62 4.60
Strong Strong 4.82 4.58
Strong Weak 2.56 3.00

Table 8
Outer boundaries for the minority class labels in the flags dataset based on
learned and statistical label correlations.
Label Label correlation manner Outer boundaries

y6 Statistics {BO
61, B

O
62, B

O
63, B

O
64}

Learning {BO
61, B

O
62, B

O
63, B

O
64, B

O
67}

y7 Statistics {BO
71, B

O
72, B

O
73, B

O
74, B

O
75}

Learning {BO
72, B

O
73, B

O
74, B

O
75}

5.7. Effectiveness of exploiting label correlation

To verify our assumption, we perform extensive experiments
n four different ways to exploit label correlations. Statistical label
orrelations are obtained by calculating the label co-occurrences.
o verify the best way to guide oversampling with label correla-
ions, we exploit different oversampling conditions for each mi-
ority label: weak correlation with a minority class label, strong
orrelation with a minority class label, weak correlation with a
ajority class label, and strong correlation with a majority class

abel.
The oversampling condition of our LCOS is a strong correlation

ith a minority class label and a weak correlation with a majority
lass label for each minority class label. Table 7 shows the average
ank of the Macro F1 and Macro AUC for different ways to exploit
abel correlations with six base learners. From Table 7, it can be
bserved that LCOS performs best on Macro F1 and Macro AUC,
alidating the assumption of our algorithm on how to leverage
he label correlations to guide the oversampling. Moreover, the
earned label correlations are more appropriate, regardless of
ny correlation guidance means. For example, Fig. 10(a) and (b)
how the learned correlation matrix and the statistical correlation
atrix on the flags dataset, respectively. According to IRLBl and
eanIR, the labels y6 and y7 are minority class labels, and the

other labels are majority class labels. The correlation threshold
τ is set to 0.6. Under our assumption, Table 8 shows the outer
boundaries of minority class labels based on the statistical and
learned label correlations. It can be observed that different label
correlations lead to selecting different outer boundaries for the
minority class label, affecting the performance of oversampling.
The Macro F1 results of oversampling the minority class label
based on different label correlations using MLKNN are shown in
Fig. 11. It can be observed that the learned label correlations
guided oversampling performs better, which implies that the
learned label correlations are more accurate.

6. Conclusion

We present an oversampling method called LCOS to address
he multi-label imbalanced data classification problem. The main
12
Fig. 10. The label correlation matrices obtained by learning and statistics in the
flags dataset.

Fig. 11. The comparison of different label correlations using MLKNN in terms
of Macro F1 under the correlation guidance manner of our assumption.

features of LCOS are summarized in three points. First, LCOS
can learn the inherent label correlations from complex multi-
label datasets. Second, it can select an appropriate subset of each
minority class label sample according to the learned correlation
matrix. Third, it can assign exact weights to the selected in-
stances according to their importance in the data. Furthermore,
we not only demonstrate that label correlations are beneficial
for multi-label data oversampling but also suggest an effective
strategy to leverage it to guide oversampling. We conducted
experiments on sixteen public datasets and the results show that
LCOS achieves highly competitive performance against state-of-
the-art algorithms in terms of various assessment metrics, such
as Macro F1 and Macro AUC. Our study provides a research direc-
tion to extend sampling methods to the multi-label imbalanced
learning task.

In future work, we need to improve the efficiency of candidate
seed identification and take label correlations into consideration
when assigning labels to newly generated instances. Additionally,
we need to consider the case of missing labels, because it is too
expensive to obtain complete labeled data, and there are often
incorrect labels.
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